audioop -- Python library reference
Next: imageop
Prev: Multimedia Services
Up: Multimedia Services
Top: Top
12.1. Built-in Module audioop
The audioop
module contains some useful operations on sound fragments.
It operates on sound fragments consisting of signed integer samples
8, 16 or 32 bits wide, stored in Python strings. This is the same
format as used by the al
and sunaudiodev
modules. All
scalar items are integers, unless specified otherwise.
A few of the more complicated operations only take 16-bit samples,
otherwise the sample size (in bytes) is always a parameter of the operation.
The module defines the following variables and functions:
- error -- exception of module audioop
-
This exception is raised on all errors, such as unknown number of bytes
per sample, etc.
- add (fragment1, fragment2, width) -- function of module audioop
-
Return a fragment which is the addition of the two samples passed as
parameters. width is the sample width in bytes, either
1
, 2
or 4
. Both fragments should have the same
length.
- adpcm2lin (adpcmfragment, width, state) -- function of module audioop
-
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See
the description of
lin2adpcm
for details on ADPCM coding.
Return a tuple (sample, newstate)
where the sample
has the width specified in width.
- adpcm32lin (adpcmfragment, width, state) -- function of module audioop
-
Decode an alternative 3-bit ADPCM code. See
lin2adpcm3
for
details.
- avg (fragment, width) -- function of module audioop
-
Return the average over all samples in the fragment.
- avgpp (fragment, width) -- function of module audioop
-
Return the average peak-peak value over all samples in the fragment.
No filtering is done, so the usefulness of this routine is
questionable.
- bias (fragment, width, bias) -- function of module audioop
-
Return a fragment that is the original fragment with a bias added to
each sample.
- cross (fragment, width) -- function of module audioop
-
Return the number of zero crossings in the fragment passed as an
argument.
- findfactor (fragment, reference) -- function of module audioop
-
Return a factor F such that
rms(add(fragment, mul(reference, -F)))
is minimal, i.e.,
return the factor with which you should multiply reference to
make it match as well as possible to fragment. The fragments
should both contain 2-byte samples.
The time taken by this routine is proportional to len(fragment)
.
- findfit (fragment, reference) -- function of module audioop
-
This routine (which only accepts 2-byte sample fragments)
Try to match reference as well as possible to a portion of
fragment (which should be the longer fragment). This is
(conceptually) done by taking slices out of fragment, using
findfactor
to compute the best match, and minimizing the
result. The fragments should both contain 2-byte samples. Return a
tuple (offset, factor)
where offset is the
(integer) offset into fragment where the optimal match started
and factor is the (floating-point) factor as per
findfactor
.
- findmax (fragment, length) -- function of module audioop
-
Search fragment for a slice of length length samples (not
bytes!) with maximum energy, i.e., return i for which
rms(fragment[i*2:(i+length)*2])
is maximal. The fragments
should both contain 2-byte samples.
The routine takes time proportional to len(fragment)
.
- getsample (fragment, width, index) -- function of module audioop
-
Return the value of sample index from the fragment.
- lin2lin (fragment, width, newwidth) -- function of module audioop
-
Convert samples between 1-, 2- and 4-byte formats.
- lin2adpcm (fragment, width, state) -- function of module audioop
-
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an
adaptive coding scheme, whereby each 4 bit number is the difference
between one sample and the next, divided by a (varying) step. The
Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
may well become a standard.
State
is a tuple containing the state of the coder. The coder
returns a tuple (adpcmfrag, newstate)
, and the
newstate should be passed to the next call of lin2adpcm. In the
initial call None
can be passed as the state. adpcmfrag
is the ADPCM coded fragment packed 2 4-bit values per byte.
- lin2adpcm3 (fragment, width, state) -- function of module audioop
-
This is an alternative ADPCM coder that uses only 3 bits per sample.
It is not compatible with the Intel/DVI ADPCM coder and its output is
not packed (due to laziness on the side of the author). Its use is
discouraged.
- lin2ulaw (fragment, width) -- function of module audioop
-
Convert samples in the audio fragment to U-LAW encoding and return
this as a Python string. U-LAW is an audio encoding format whereby
you get a dynamic range of about 14 bits using only 8 bit samples. It
is used by the Sun audio hardware, among others.
- minmax (fragment, width) -- function of module audioop
-
Return a tuple consisting of the minimum and maximum values of all
samples in the sound fragment.
- max (fragment, width) -- function of module audioop
-
Return the maximum of the absolute value of all samples in a
fragment.
- maxpp (fragment, width) -- function of module audioop
-
Return the maximum peak-peak value in the sound fragment.
- mul (fragment, width, factor) -- function of module audioop
-
Return a fragment that has all samples in the original framgent
multiplied by the floating-point value factor. Overflow is
silently ignored.
- reverse (fragment, width) -- function of module audioop
-
Reverse the samples in a fragment and returns the modified fragment.
- rms (fragment, width) -- function of module audioop
-
Return the root-mean-square of the fragment, i.e.
the square root of the quotient of the sum of all squared sample value,
divided by the sumber of samples.
This is a measure of the power in an audio signal.
- tomono (fragment, width, lfactor, rfactor) -- function of module audioop
-
Convert a stereo fragment to a mono fragment. The left channel is
multiplied by lfactor and the right channel by rfactor
before adding the two channels to give a mono signal.
- tostereo (fragment, width, lfactor, rfactor) -- function of module audioop
-
Generate a stereo fragment from a mono fragment. Each pair of samples
in the stereo fragment are computed from the mono sample, whereby left
channel samples are multiplied by lfactor and right channel
samples by rfactor.
- ulaw2lin (fragment, width) -- function of module audioop
-
Convert sound fragments in ULAW encoding to linearly encoded sound
fragments. ULAW encoding always uses 8 bits samples, so width
refers only to the sample width of the output fragment here.
Note that operations such as mul
or max
make no
distinction between mono and stereo fragments, i.e. all samples are
treated equal. If this is a problem the stereo fragment should be split
into two mono fragments first and recombined later. Here is an example
of how to do that:
def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)
If you use the ADPCM coder to build network packets and you want your
protocol to be stateless (i.e. to be able to tolerate packet loss)
you should not only transmit the data but also the state. Note that
you should send the initial state (the one you passed to
lin2adpcm
) along to the decoder, not the final state (as returned by
the coder). If you want to use struct
to store the state in
binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.
The ADPCM coders have never been tried against other ADPCM coders,
only against themselves. It could well be that I misinterpreted the
standards in which case they will not be interoperable with the
respective standards.
The find...
routines might look a bit funny at first sight.
They are primarily meant to do echo cancellation. A reasonably
fast way to do this is to pick the most energetic piece of the output
sample, locate that in the input sample and subtract the whole output
sample from the input sample:
def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
# Optional (for better cancellation):
# factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
# out_test)
prefill = '\0'*(pos+ipos)*2
postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)
Next: imageop
Prev: Multimedia Services
Up: Multimedia Services
Top: Top